Hand-In Assignment 1

Let $A, B \subset \mathbb{R}$ be nonempty.

- Define A + B = {x + y : x ∈ A and y ∈ B}. Compute sup (A + B) in terms of sup (A) and sup (B). Repeat exercise for inf (A + B). Justify your answer. [10 pts]
- 2. Let c > 0. Define $cA = \{c : x \in A\}$. Compute sup (cA) in terms of sup (A). What happens if c < 0? Repeat exercise for inf (cA). [10 pts]
- 3. Define $AB = \{xy: x \in A \text{ and } y \in B\}$. Assuming that the elements of A and the elements of B are nonnegative, compute sup (AB) in terms of sup (A) and sup (B). Is your answer still true if we drop the assumption that A and B are nonnegative? [10 pts]
- 4. Suppose $f : A \to \mathbb{R}$ and $g : A \to \mathbb{R}$ are real valued functions. Define $f(A) \oplus g(A) = \{f(x) + g(x) : x \in A\}$ and $f(A) + g(A) = \{f(x) + g(y) : x, y \in A\}$. What is the relationship between sup $(f(A) \oplus g(A))$ and sup (f(A) + g(A))? Repeat exercise for inf $(f(A) \oplus g(A))$ [10 pts]